Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 780
Filtrar
1.
Methods Mol Biol ; 2777: 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478340

RESUMO

Patient-derived organoids (PDOs) generated from adult stem cells present in tissues are invaluable tools for translational cancer research (Drost, Clevers, Nat Rev Cancer 18(7):407-418, 2018). The generation of this 3D cultures is not trivial and requires dedicated procedures. Despite the rapid increase in the use of organoids in cancer research, it is noteworthy that published procedures regarding their generation often lack critical information and standardized protocols remain elusive. Addressing these limitations, the protocol described in this chapter offers an in-depth and comprehensive guide to establishing, expanding, and freezing gastrointestinal PDOs obtained from normal and tumor tissue biopsies. Notably, it also provides valuable insights in the form of tips and tricks to guide and overcome potential challenges that may arise during the procedure.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias , Adulto , Humanos , Neoplasias/patologia , Trato Gastrointestinal , Biópsia , Organoides
2.
JCI Insight ; 9(8)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451719

RESUMO

Mesenchymal stem cells (MSCs), suffering from diverse gene hits, undergo malignant transformation and aberrant osteochondral differentiation. Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), a nonreceptor protein tyrosine phosphatase, regulates multicellular differentiation, proliferation, and transformation. However, the role of SHP2 in MSC fate determination remains unclear. Here, we showed that MSCs bearing the activating SHP2E76K mutation underwent malignant transformation into sarcoma stem-like cells. We revealed that the SHP2E76K mutation in mouse MSCs led to hyperactive mitochondrial metabolism by activating mitochondrial complexes I and III. Inhibition of complexes I and III prevented hyperactive mitochondrial metabolism and malignant transformation of SHP2E76K MSCs. Mechanistically, we verified that SHP2 underwent liquid-liquid phase separation (LLPS) in SHP2E76K MSCs. SHP2 LLPS led to its dissociation from complexes I and III, causing their hyperactivation. Blockade of SHP2 LLPS by LLPS-defective mutations or allosteric inhibitors suppressed complex I and III hyperactivation as well as malignant transformation of SHP2E76K MSCs. These findings reveal that complex I and III hyperactivation driven by SHP2 LLPS promotes malignant transformation of SHP2E76K MSCs and suggest that inhibition of SHP2 LLPS could be a potential therapeutic target for the treatment of activated SHP2-associated cancers.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Mesenquimais , Mitocôndrias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Mitocôndrias/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Mutação , Diferenciação Celular , 60422
3.
Stem Cells Dev ; 33(7-8): 168-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386505

RESUMO

Knee osteoarthritis (KOA) is a prevalent condition characterized by the progressive deterioration of the entire joint and has emerged as a prominent contributor to disability on a global scale. The nature of the disease and its impact on joint function significantly limit mobility and daily activities, highlighting its substantial influence on patients' overall well-being. Stromal vascular fraction (SVF) is a heterogenous, autologous cell product, containing mesenchymal stem cells, derived from the patient's subcutaneous adipose tissue with demonstrated safety and efficacy in the treatment of KOA patients. We conducted a single-arm, open-label, multisite, FDA approved clinical study in Kellgren-Lawrence severity grade 2-4 KOA patients. The cellular product was manufactured from patient-specific lipoaspirate in a centrally located FDA-compliant manufacturing facility. Twenty-nine subjects were treated with a quality tested single intra-articular injection of GMP manufactured SVF. Adverse events, laboratory values, vital signs, and physical examination findings were monitored during the study period. Robust tolerability, without any substantial safety issues, was demonstrated. Knee pain and function, assessed through the Knee Injury and Osteoarthritis Outcome Score (KOOS), demonstrated notable improvements. These positive benefits persisted for up to 12 months, and the majority of participants expressed satisfaction. SVF from each patient was stored in a liquid nitrogen freezer for future clinical treatments. Unique to this study of autologous cells is the shipment of lipoaspirate from the clinic to a central FDA-compliant manufacturing facility for cleanroom-controlled manufacturing. The cell product characterization data demonstrate that this method produces an equivalent product in terms of cell count and viability with the added benefit of further quality assurance testing, including sterility, endotoxin, and flow cytometry, before patient administration. Clinical Trial Registration Number: NCT04043819.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite do Joelho , Humanos , Injeções Intra-Articulares , Osteoartrite do Joelho/terapia , Fração Vascular Estromal , Gordura Subcutânea , Resultado do Tratamento
4.
Stem Cell Res Ther ; 15(1): 32, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321563

RESUMO

BACKGROUND: The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS: In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS: Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS: The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.


Assuntos
Células-Tronco Adultas , Neurônios , Adulto , Humanos , Diferenciação Celular/fisiologia , Extensões da Superfície Celular , Núcleo Celular , Células da Medula Óssea , Células Cultivadas
5.
JCI Insight ; 9(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349739

RESUMO

Connexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) beiging in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of Gja1 (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the Dermo1/Twist2 promoter led to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high-fat diet (HFD) in both sexes. These protective effects were related to increased locomotion, fuel utilization, energy expenditure, nonshivering thermogenesis, and better glucose tolerance in conditionally Gja1-ablated mice. Accordingly, Gja1-mutant mice exhibited reduced adipocyte hypertrophy, partially preserved insulin sensitivity, increased BAT lipolysis, and decreased whitening under HFD. This metabolic phenotype was not reproduced with more restricted Gja1 ablation in differentiated adipocytes, suggesting that Cx43 in adipocyte progenitors or other targeted cells restrains energy expenditures and promotes fat accumulation. These results reveal what we believe is a hitherto unknown action of Cx43 in adiposity, and offer a promising new pharmacologic target for improving metabolic balance in diabetes and obesity.


Assuntos
Adiposidade , Conexina 43 , Masculino , Feminino , Camundongos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Metabolismo Energético
6.
Stem Cells ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301639

RESUMO

Loss of sensory innervation delays wound healing and administration of the neuropeptide substance P improves re-epithelialization. Keratinocyte hyperproliferation post-wounding may result from symmetric stem cell (SC) self-renewal, asymmetric SC self-renewal, committed progenitor divisions, or a combination of these. However, the effects of sensory denervation and of neuropeptides on SC proliferation are not known. Here we show that early after wounding both asymmetric and symmetric SC self-renewal increase, without significant committed progenitor (CP) activation. Decreased sensory innervation is associated with a decrease in both SC and CP proliferation. Based on previous work showing that substance P is decreased in capsaicin-treated mice and improves wound healing in normal skin, we examined the effects of substance P on SC and CP proliferation during wound healing. Substance P restored asymmetric SC proliferation in skin with decreased sensory innervation, both at baseline and following wounding. Epidermis with decreased sensory innervation was severely thinned. Consistent with this, substance P-induced asymmetric SC proliferation resulted in increased stratification in skin with both normal and decreased innervation. Lapatinib prevented the substance P-induced increase in asymmetric SC divisions in murine epidermis, as well as the increase in epidermal stratification, suggesting that asymmetric SC divisions are required for epidermal stratification.

7.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193536

RESUMO

Prolonged seizures can disrupt stem cell behavior in the adult hippocampus, an important brain structure for spatial memory. Here, using a mouse model of pilocarpine-induced status epilepticus (SE), we characterized spatiotemporal expression of Lin28a mRNA and proteins after SE. Unlike Lin28a transcripts, induction of LIN28A protein after SE was detected mainly in the subgranular zone, where immunoreactivity was found in progenitors, neuroblasts, and immature and mature granule neurons. To investigate roles of LIN28A in epilepsy, we generated Nestin-Cre:Lin28aloxP/loxP (conditional KO [cKO]) and Nestin-Cre:Lin28a+/+ (WT) mice to block LIN28A upregulation in all neuronal lineages after acute seizure. Adult-generated neuron- and hippocampus-associated cognitive impairments were absent in epileptic LIN28A-cKO mice, as evaluated by pattern separation and contextual fear conditioning tests, respectively, while sham-manipulated WT and cKO animals showed comparable memory function. Moreover, numbers of hilar PROX1-expressing ectopic granule cells (EGCs), together with PROX1+/NEUN+ mature EGCs, were significantly reduced in epileptic cKO mice. Transcriptomics analysis and IHC validation at 3 days after pilocarpine administration provided potential LIN28A downstream targets such as serotonin receptor 4. Collectively, our findings indicate that LIN28A is a potentially novel target for regulation of newborn neuron-associated memory dysfunction in epilepsy by modulating seizure-induced aberrant neurogenesis.


Assuntos
Epilepsia , Estado Epiléptico , Animais , Nestina/genética , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Hipocampo , Neurogênese
8.
Clin Exp Ophthalmol ; 52(2): 148-166, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214071

RESUMO

Adult stem cells, present in various parts of the human body, are undifferentiated cells that can proliferate and differentiate to replace dying cells within tissues. Stem cells have specifically been identified in the cornea, trabecular meshwork, crystalline lens, iris, ciliary body, retina, choroid, sclera, conjunctiva, eyelid, lacrimal gland, and orbital fat. The identification of ocular stem cells broadens the potential therapeutic strategies for untreatable eye diseases. Currently, stem cell transplantation for corneal and conjunctival diseases remains the most common stem cell-based therapy in ocular clinical management. Lens epithelial stem cells have been applied in the treatment of paediatric cataracts. Several early-phase clinical trials for corneal and retinal regeneration using ocular stem cells are also underway. Extensive preclinical studies using ocular stem cells have been conducted, showing encouraging outcomes. Ocular stem cells currently demonstrate great promise in potential treatments of eye diseases. In this review, we focus on the identification, characterisation, and therapeutic application of adult stem cells in the eye.


Assuntos
Células-Tronco Adultas , Oftalmopatias , Cristalino , Humanos , Criança , Retina , Cristalino/química , Córnea , Oftalmopatias/terapia , Pálpebras
9.
Metabolism ; 152: 155786, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211697

RESUMO

Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Organoides/irrigação sanguínea , Diabetes Mellitus Tipo 1/terapia , Bioengenharia
10.
Cell Stem Cell ; 31(1): 7-24, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181752

RESUMO

All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.


Assuntos
Mamíferos , Nicho de Células-Tronco , Animais , Células-Tronco
11.
J Ophthalmic Inflamm Infect ; 14(1): 5, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277094

RESUMO

PURPOSE: This study investigates immune cell (ICs) infiltration in advanced keratoconus patients undergoing autologous adipose-derived adult stem cell (ADASC) therapy with recellularized human donor corneal laminas (CL). METHODS: A prospective clinical trial included fourteen patients divided into three groups: G-1, ADASCs; G-2, decellularized CL (dCL); and G-3, dCL recellularized with ADASCs (ADASCs-rCL). Infiltrated ICs were assessed using in vivo confocal microscopy (IVCM) at 1,3,6, and12 months post-transplant. RESULTS: Infiltrated ICs, encompassing granulocytes and agranulocytes, were observed across all groups, categorized by luminosity, structure, and area. Stromal ICs infiltration ranged from 1.19% to 6.62%, with a consistent increase in group-related cell density (F = 10.68, P < .0001), independent of post-op time (F = 0.77, P = 0.511); the most substantial variations were observed in G-3 at 6 and 12 months (2.0 and 1.87-fold, respectively). Similarly, significant size increases were more group-dependent (F = 5.76, P < .005) rather than time-dependent (F = 2.84, P < .05); G-3 exhibited significant increases at 6 and 12 months (3.70-fold and 2.52-fold, respectively). A lamina-induced shift in IC size occurred (F = 110.23, P < .0001), primarily with 50-100 µm2 sizes and up to larger cells > 300µm2, presumably macrophages, notably in G-3, indicating a potential role in tissue repair and remodeling, explaining reductions in cells remnants < 50µm2. CONCLUSIONS: ADASCs-rCL therapy may lead to increased IC infiltration compared to ADASCs alone, impacting cell distribution and size due to the presence of the lamina. The findings reveal intricate immune patterns shaped by the corneal microenvironment and highlight the importance of understanding immune responses for the development of future therapeutic strategies.

12.
Curr Protoc ; 4(1): e975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284221

RESUMO

Spermatozoa are formed in the testis but must transit through the epididymis to acquire motility and the ability to fertilize. The epididymis is a single convoluted tubule comprising several anatomically and physiologically distinct regions. The pseudostratified epithelium consists of multiple cell types, including principal cells, clear cells, narrow cells, and apical cells, that line the lumen of the epididymis. Basal cells are present at the base of the epithelium, and halo cells, which includes macrophages/monocytes, mononuclear phagocytes, and T lymphocytes, are also present in the epithelium. Several aspects of this complex spermatozoan maturation process are well established, but a great deal remains poorly understood. Given that dysfunction of the epididymis has been associated with male infertility, in vitro tools to study epididymal function and epididymal sperm maturation are required. Our lab and others have previously developed human, rat, and mouse epithelial principal cell lines, which have been used to address certain questions, such as about the regulation of junctional proteins in the epididymis, as well as the toxicity of nonylphenols. Given that the epididymal epithelium comprises multiple cell types, however, a 3D in vitro model provides a more comprehensive and realistic tool that can be used to study and elucidate the multiple aspects of epididymal function. The purpose of this article is to provide detailed information regarding the preparation, maintenance, passaging, and immunofluorescent staining of rat epididymal organoids derived from adult basal cells, which we have demonstrated to be a type of adult stem cell in the rat epididymis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of epididymal cells Basic Protocol 2: Magnetic activated cell sorting and isolation of basal cells Basic Protocol 3: Preparation and culture of epididymal basal cell organoids Basic Protocol 4: Passage of epididymal basal cell organoids Basic Protocol 5: Freezing and thawing of epididymal basal cell organoids Basic Protocol 6: Immunofluorescent staining of epididymal basal cell organoids.


Assuntos
Epididimo , Sêmen , Camundongos , Masculino , Ratos , Humanos , Animais , Epididimo/metabolismo , Testículo , Organoides , Técnicas de Cultura de Células em Três Dimensões
13.
Int J Stem Cells ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267367

RESUMO

Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.

14.
Tissue Eng Part A ; 30(1-2): 5-13, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950711

RESUMO

From a literary perspective, the concept of tissue engineering and regenerative medicine dates back several thousand years. However, from a scientific aspect, the current state of the field owns its initial origin to the discovery of cell culture methods and the ability to maintain cells outside the body in the early 1900s, to later discoveries surrounding stem cells. The science of biomaterials evolved more recently, from the use of degradable natural biomaterials in the 1970's to artificial biomaterials in the 1980s, and bioprinting hydrogels this century. Tissue engineering, originally involving the combination of cells and biomaterials, owes its roots to the early attempts in the 1960s to create artificial skin grafts as temporary wound covers for burn patients. Much has transpired since, with an increasing number of technologies reaching patients. Academia, industry, government agencies, societies, and nonprofit organizations have all played a role in advancing the field to where it is today. This overview, presented at the Rice Short Course on Advances in Tissue Engineering, highlights some of the historical aspects, as well as past and future challenges and opportunities. At the current pace of discovery, the field is poised to continue its exponential growth.


Assuntos
Pele Artificial , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Materiais Biocompatíveis , Células-Tronco , Impressão Tridimensional
15.
Stem Cells ; 42(1): 76-89, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37931142

RESUMO

Mesenchymal stem cells (MSCs) are widely used in therapy, but the differences between MSCs of various origins and their ability to undergo osteogenic differentiation and produce extracellular matrix are not fully understood. To address this, we conducted a comparative analysis of mesenchymal cell primary cultures from 6 human sources, including osteoblast-like cells from the adult femur, adipose-derived stem cells, Wharton's jelly-derived mesenchymal cells, gingival fibroblasts, dental pulp stem cells, and periodontal ligament stem cells. We analyzed these cells' secretome, proteome, and transcriptome under standard and osteogenic cultivation conditions. Despite the overall similarity in osteogenic differentiation, the cells maintain their embryonic specificity after isolation and differentiation in vitro. Furthermore, we propose classifying mesenchymal cells into 3 groups: dental stem cells of neural crest origin, mesenchymal stem cells, and fetal stem cells. Specifically, fetal stem cells have the most promising secretome for various applications, while mesenchymal stem cells have a specialized secretome optimal for extracellular matrix production. Nevertheless, mesenchymal cells from all sources secreted core bone extracellular matrix-associated proteins. In conclusion, our study illuminates the distinctive characteristics of mesenchymal stem cells from various sources, providing insights into their potential applications in regenerative medicine and enhancing our understanding of the inherent diversity of mesenchymal cells in vivo.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Osteogênese , Diferenciação Celular , Técnicas de Cultura de Células , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo
16.
Dev Cell ; 58(24): 3048-3063.e6, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38056452

RESUMO

Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Linhagem da Célula , Intestinos , Diferenciação Celular/genética
17.
Stem Cells ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066665

RESUMO

Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-seq (scRNA-seq) to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed a MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.

18.
JCI Insight ; 8(24)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943618

RESUMO

Germline adenomatous polyposis coli (APC) mutation in patients with familial adenomatous polyposis (FAP) promotes gastrointestinal polyposis, including the formation of frequent gastric fundic gland polyps (FGPs). In this study, we investigated how dysregulated Wnt signaling promotes FGPs and why they localize to the corpus region of the stomach. We developed a biobank of FGP and surrounding nonpolyp corpus biopsies and organoids from patients with FAP for comparative studies. Polyp biopsies and polyp-derived organoids exhibited enhanced Wnt target gene expression. Polyp-derived organoids with intrinsically upregulated Wnt signaling showed poor tolerance to further induction, suggesting that high Wnt restricts growth. Targeted genomic sequencing revealed that most gastric polyps did not arise via APC loss of heterozygosity. Studies in genetic mouse models demonstrated that heterozygous Apc loss increased epithelial cell proliferation in the corpus but not the antrum, while homozygous Apc loss was not maintained in the corpus yet induced hyperproliferation in the antrum. Our findings suggest that heterozygous APC mutation in patients with FAP may be sufficient to drive polyp formation in the corpus region while subsequent loss of heterozygosity to further enhance Wnt signaling is not tolerated. This finding contextualizes the abundant yet benign nature of gastric polyps in FAP patient corpus compared with the rare, yet adenomatous polyps in the antrum.


Assuntos
Polipose Adenomatosa do Colo , Pólipos Adenomatosos , Humanos , Animais , Camundongos , Via de Sinalização Wnt , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia
19.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991018

RESUMO

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM cell lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM-derived cells localized throughout the vessel wall and atherosclerotic plaques, where they primarily differentiated into fibroblasts, smooth muscle cells (SMC), or remained in a stem-like state. Krüppel-like factor 4 (Klf4) knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched fibroblast phenotype compared with WT mice. Additionally, Klf4 deletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMC and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 deletion, but multiple indices of plaque composition complexity, including necrotic core area, macrophage accumulation, and fibrous cap thickness, were reduced. Collectively, these data support that modulation of AdvSca1-SM cells through KLF4 depletion confers increased protection from the development of potentially unstable atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/patologia , Fator 4 Semelhante a Kruppel , Miócitos de Músculo Liso/patologia , Células-Tronco/patologia , Músculo Liso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...